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INTRODUCTION 

 In recent years, the worldwide success of the anticancer 
drug, cisplatin has caused a veritable explosion of research in 
medicinal bioinorganic chemistry [1]. The discovery of cis-
platin serves as a prime example of a scientific accident. In 
1964, American biophysicist Barnett Rosenberg and his col-
leagues at Michigan State University, East Lansing, USA, 
examined the effect of an electrical field on the growth of 
bacteria. They suspended a bacterial culture between two 
Platinum electrodes, and after applying an electric field for 
one hour, discovered that the bacterial cells stopped dividing. 
The inhibition of cell division involved some kind of Plati-
num-based complex derived from the electrodes. This led 
Rosenburg to discover a Platinum-based anticancer drug, 
namely, cisplatin (Fig. (1)), or cis-diamminedichloropla-
tinum(II), which has the formula, [Pt(NH3)2Cl2]. This com-
plex can exist in three potential isomers, two geometrical 
isomers, cis-diamminedichloroplatinum(II), trans-diammine-
dichloroplatinum(II) (Fig. (1)), and a third form; a dimeric 
polymerization-type isomer called Magnus’ Green Salt (Fig. 
(1)), [Pt(NH3)4][PtCl4]n, which is used as a semi-conductor.  

 Once cisplatin enters cells, it undergoes aquation. Each 
chloride ligand is replaced with a molecule of water, which 
generates a positively-charged species. The reaction scheme 
is shown below: 

Outside the cell: Pt(NH3)2Cl2 

Inside the cell: Pt(NH3)2Cl2 + H2O  [Pt(NH3)2Cl(H2O)]
+
 + Cl

- 

[Pt(NH3)2Cl(H2O)]
+ 

+ H2O  [Pt(NH3)2(H2O)2]
2+ 

+ Cl
- 
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 This reaction occurs within the cell because the intracel-
lular chloride ion concentration is relatively low inside the 
cell (~3-20 mM) [2]. Aquation does not occur in solution 
because cisplatin is typically given in a saline solution with a 
much higher chloride ion concentration (~100 mM). 

 Cisplatin kills cancer cells by forming covalent adducts 
with DNA (deoxyribonucleic acid) [3]. Early in vitro studies 
with salmon sperm DNA showed that cisplatin binds to the 
N7 position of the imidazole ring of the purine bases of 
DNA. X-ray crystallographic [4] and nuclear magnetic reso-
nance studies [5] have confirmed the structure of this adduct. 
The purine base guanine is the usual target, but the other 
purine base, adenine, is a lesser target. If only one chlorine 
atom leaves, Platinum can form a monofunctional adduct, 
but if both chlorines leave as a result of aquation, a bifunc-
tional adduct results [6]. The vast majority of adducts form 
on the same DNA strand and involve bases adjacent to one 
another. Such adducts are called intrastrand adducts or cross-
links. Sixty-to-sixty-five percent of all cisplatin-induced ad-
ducts occur between adjacent guanine bases on the same 
strand and are called 1,2-d(GpG) intrastrand adducts (Fig. 
(2AI)); twenty-to-twenty-five percent are 1,2-d(ApG) in-
trastrand adducts (Fig. (2AII)). Other less frequently pro-
duced intrastrand adducts consist of 1,3-d(GpXpG) in-
trastrand cross-links (2%), where another base lies between 
the two platinated guanines (Fig. (2AIII)), and monofunc-
tional adducts on guanines (~2%, Fig. (2B)). Some two per-
cent of adducts involve platination of guanines on opposite 
strands (Fig. (2C)) and are termed G–G interstrand cross-
links [7]. DNA-cisplatin-protein adducts form infrequently 
(Fig. (2D)) [8].  

 There are several different theories as to why cisplatin 
kills cells, but the majority view is that 1,2-intrastrand cross-
links are the cytotoxic lesion. This explains why the trans 
isomer of cisplatin, trans-diamminedichloroplatinum(II), 
which is unable to form 1,2-intrastrand cross-links, is not an 
effective antitumor agent [9]. Such cross-links, however, are 
not the only reason cisplatin is so toxic to cancer cells. The 
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DNA repair machinery can repair a variety of lesions, but the 
kind of lesion induced by cisplatin seems to confound this 
repair machinery and induce cell death.  

 A primary component of cisplatin-induced cell death is 
the high mobility group (HMG) proteins. These proteins are 
closely associated with the curvature of chromatin. HMG 
domains are about eighty amino acids long, and consist of 
three rather basic -helices. The presence of HMG proteins 
seems to correlate with cisplatin/carboplatin sensitivity. The 
testis, for example, is exquisitely sensitive to cisplatin, and 
expresses several HMG domain proteins. In particular, 
members of the HMGB family bind to those 1,2-d(GpG) 
cross-links induced by cisplatin, but not to DNA cross-links 
generated by trans-diamminedichloroplatinum(II). Upon 
association with 1,2-d(GpG) cross-links, they prevent repli-
cative bypass (translesion synthesis) [10]. Other HMGB pro-
teins (SRY, UBF, and LEF-1) have been shown to block 
nucleotide excision repair (NER) (see [11] for a review), 
transcription, and DNA replication. This might explain how 
cisplatin kills cells, since this block in cellular processes 
probably relays DNA damage signals that initiate apoptosis 
[12]. Support for this theory comes from the work of He, et 
al., who found that exposure of MCF-7 breast cancer cells to 
estrogen caused overexpression of HMGB1 and sensitization 
to cisplatin killing [13].  

 Cisplatin also significantly affects signal transduction 
pathways inside cells, ultimately inducing apoptosis [14-18]. 
It also activates the endoplasmic reticulum (ER) stress path-
way, which is characterized by the unfolded protein response 
(UPR) [19, 20]. The UPR can culminate in the activation of 
caspase-12, which induces apoptosis [21, 22].  

 Clinically, cisplatin is the principal treatment for ovarian, 
testicular, and bladder cancers. [23, 24]. When combined 

with other anti-cancer drugs, cisplatin is also used to treat 
cancers of the lung, head-and-neck, esophagus, stomach, 
colon, bladder, cervix, uterus. It also serves as a second-line 
treatment for advanced cancers of the breast, pancreas, liver, 
kidney, prostate, and against glioblastomas, metastatic mela-
nomas, and peritoneal or pleural mesotheliomas [reviewed in 
25, 26]. Despite its wide use, cisplatin can cause serious side 
effects, such as chronic damage to the kidneys, persistent 
peripheral neuropathy, ototoxicity (resulting in permanent 
hearing loss), gastrointestinal toxicity (emetogenesis) and 
asthenia [27]. Cisplatin can also cause testicular damage and 
induce sterility [28]. Furthermore it is inactive against some 
secondary cancers.  

 Limited solubility in aqueous solutions is one of the dis-
advantages of cisplatin, which is crucial for intravenous ad-
ministration [29]. Additionally, acquired Platinum drug re-
sistance effectively restricts the widespread use of cisplatin. 
Several mechanisms contribute to this drug resistance, in-
cluding altered drug accumulation [30-32], reduced interac-
tion with its intracellular targets, enhanced DNA repair [33, 
34], and increased detoxification [35, 36]. Reduced suscepti-
bility to apoptosis has also been proposed as a mechanism of 
resistance to a variety of antitumor drugs, including Platinum 
compounds [37-39]. Moreover, alterations in signal trans-
duction pathways can affect cellular response to cytotoxic 
drugs [40-42].  

 This mini-review examines some of the more recent de-
velopments in Platinum and Ruthenium-based complexes, 
and surveys their synthesis, structure, and biological activity. 
Additionally, some recent, novel Molybdenum and Copper 
complexes with potential anti-cancer activity are explored.  

NEWER PLATINUM-BASED ANTICANCER DRUGS 

 Given the limitations of cisplatin, researchers have de-
voted considerable energy to discovering similar anticancer 
drugs that do not share its severe side effects. It has been 
over forty years since the first publication that outlined the 
biological activity of cisplatin. Out of the thousands of syn-
thesized and evaluated Pt(II) complexes, only three com-
pounds, cisplatin, carboplatin (Fig. (3)), and oxaliplatin (Fig. 
(3)) have been approved for worldwide clinical practice (in 
1978, 1993, and 2002, respectively) [43-50]. In addition, 
Nedaplatin (Fig. (3)) has been approved in Japan for the 
treatment of head-and-neck, testicular, lung, ovarian, cervi-
cal, and non-small-cell lung cancers [51, 52]. Lobaplatin 
(Fig. (3)) is registered in China for the treatment of chronic 
myelogenous leukemia, inoperable metastatic breast and 
small cell lung cancer [53-55]. Heptaplatin (Fig. (3)) has 
been approved in South Korea for gastric cancer [56-61].  

 In clinical practice, Platinum drugs are administered in-
travenously. However, Platinum drugs that could be effec-
tively administered orally are strongly desirable in order to 
increase their potential clinical uses in outpatient settings. In 
recent times, several new Platinum complexes have entered 
clinical trials. The focus of most of this research has been on 
devising new methods of synthesis for such complexes and 
developing a greater understanding of their properties such 
as cellular uptake, the potential side-effects, tumor specific-
ity, biodistribution, etc [62-65].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Cisplatin and its isomers. 
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NEW GENERATIONS OF ANTI-CANCER DRUGS OF 

PLATINUM 

 Among the newer Platinum compounds, the polynuclear 
Platinum complexes are among the most promising. A sys-
tematic evaluation of these bifunctional DNA-binding agents 
revealed that a drug designated as BBR3464 (Fig. (4); 
[{trans-PtCl(NH3)2}2μ-{trans-Pt(NH3)2(H2N(CH2)6NH2)2}]

4+
) 

shows no cross resistance with cisplatin in a panel of human 
tumor xenografts, and in vitro-selected cisplatin-resistant cell 
lines, including leukemia, osteosarcoma, and ovarian carci-
noma cells [66-74].  

 Like cisplatin, BBR3464 forms cross-linked adducts with 
DNA that probably induce cell death. The high positive 
charge on BBR3464 facilitates its rapid binding to DNA. 
This preassociation with DNA significantly affects the kinet-
ics of adduct formation [75]. The half-life of BBR3464 DNA 
binding is 40 minutes, which is significantly faster than the 
neutral cisplatin [76]. When bound to supercoiled DNA cir-
cles, BBR3464 tends to unwind the DNA and preferentially 
forms interstrand rather than intrastrand DNA cross-links 
[77, 78]. BBR3464-induced interstrand cross-links are typi-
cally between guanine residues separated by two bases in 
either the 3 3  or 5 5  direction.  

 Detailed studies of DNA adducts formed by BBR3464 

with linear DNA octamers have further elucidated how this 

drug interacts with its target. BBR3464 forms 1,4-interstrand 
cross-linked adducts with the self-complementary DNA oc-

tamer 5 -d(ATGTACAT)2-3 . Specifically, the two Platinum 

atoms form bonds with the N7 positions of two guanines in 
the major groove that are located four base pairs on opposite 

DNA strands. [79, 80]. Structural analyses of these adducts 

by nuclear magnetic resonance (NMR), mass spectroscopy 
(MS), and other means showed that these BBR3464-induced 

adducts lack the kinking of the DNA double helix and un-

winding that is so characteristic of those formed by cisplatin. 
HMG proteins [81], which bind to cisplatin intrastrand cross-

links, do not recognize these 1,4-interstrand cross-links. Ad-

ditionally, BBR3464-induced 1,4-interstrand cross-links are 
not removed by nucleotide excision repair and probably per-

sist for a longer time than those formed by cisplatin [82]. 

Interestingly, when a binuclear Platinum-based antitumor 
drug, BBR3005 ([{trans-PtCl(NH3)2}2 (H2N(CH2)6NH2)]

2+
), 

was subjected to the same analyses, the adducts it formed 

with DNA were structurally similar to those formed by the 
trinuclear BBR3464. [79]. Thus the mechanism by which 

these polynuclear Platinum complexes kill cancer cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The types of DNA adducts formed by cisplatin. A) Intrastrand cross-links formed by cisplatin with DNA. I) 1,2-d(GpG) intrastrand 

cisplatin cross-links. These are the majority adduct formed by the reaction of cisplatin with DNA. II) 1,2-d(GpA) intrastrand cisplatin cross-

links, which are the second-most heavily formed adducts. III) 1,3-d(GpXpG) intrastrand cisplatin cross-links, which are only formed about 

two percent of the time. B) Monoadducts formed with DNA. These are probably formed if cisplatin is incompletely aquated. C) d(G-G)-

interstrand cisplatin crosslinks. D) DNA-cisplatin-protein adducts. Figure adapted from [194]. 
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seems to be similar, and is distinct from the mechanism used 

by cisplatin.  

 The entrance of polynuclear Platinum complexes into 
cells relies on passive and active uptake. Biophysical analy-
ses of interactions between membrane phospholipids and 
BBR3464 or a related compound, BBR3571 ([{trans-
PtCl(NH3)2}2(H2N(CH2)3NH2(CH2)4NH2)]

3+
) established elec-

trostatic, hydrogen and covalent interactions between these 
drugs and negatively-charged phospholipids like 1,2-
dipalmitoyl-sn-glycero-3-phosphatidic acid, 1,2-dipalmitoyl-
sn-glycero-3-phosphatidyl-serine, and 1,2-dipalmitoyl-sn-
glycero-3-phosphatidyl-glycerol. Entropic and enthalpic 
changes in liposomes strongly suggested that both drugs are 

not only able to interact with the negatively-charged head 
groups of the phospholipids, but are also able in insert into 
the liposome bilayer. Thus a type of “phosphate shuttle” that 
makes and breaks low-energy associations between the 
charged membrane phospholipids and these drugs could fa-
cilitate their passive entrance into cells [83].  

 Passive transport is not the only way Platinum-based 
compounds can enter cells. Both cisplatin and BBR3464 can 
enter cells by means of the Copper transporter, hCTR1, and, 
to a lesser extent, ATP7B. Copper increases the uptake of 
cisplatin and BBR3464 in ovarian and colorectal carcinoma 
cell lines, but decreases cisplatin-induced apoptosis in cancer 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Newer platinum-based anticancer drugs. Lobaplatin is a mixture of two diasteriomers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Experimental Platinum anticancer drugs. 
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cells lines. On the other hand, Copper increases BBR3464-
induced apoptosis [84].  

 The molecular mechanisms by which BBR3464 over-
comes cisplatin resistance are largely unknown. However, its 
ability to induce long-distance intra- and inter-strand cross-
links [75, 76], which are not produced by conventional mo-
nonuclear Platinum compounds, suggests that BBR3464 may 
escape the classical mechanisms of cisplatin resistance 
related to DNA damage recognition and repair. Moreover, 
due to its ability to modify DNA in a manner that is different 
from that of cisplatin, BBR3464 could evoke distinct path-
ways of cellular response to DNA damage (e.g., triggering 
the apoptotic pathway), the nature of which depends on the 
genetic background of the tumor. In fact, unlike cisplatin, 
which is generally less active against tumor models carrying 
a mutated p53 gene [85], BBR3464 displays high activity 
against human tumor cell lines and xenografts characterized 
by mutant p53 [86], probably as a consequence of its ability 
to induce p53-independent programmed cell death [87, 88]. 
Since over 50% of all human cancers show mutational inac-
tivation of p53 [89], the potential activity of BBR3464 
against cisplatin-resistant or p53-mutated tumors makes it an 
exciting candidate for clinical evaluation.  

 Preclinical studies with BBR3464 showed that this drug 
could overcome cisplatin and carboplatin resistance in cancer 
cell lines. In a neuroblastoma xenograft, BBR3464 showed a 
minimal therapeutic dose (MTD) of 0.35 mg/kg, compared 
to 4 mg/kg for cisplatin. It also showed superior activity 
against p53-mutant tumors [68, 86, 87]. Phase I trials 
showed significant dose-limiting side effects, that included 
myelosuppression, and diarrhea, but there were indications 
that BBR3464 was active against melanoma, pancreatic, 
lung and ovarian cancers. Phase I clinical trials have been 
completed [90] and phase II studies have begun. Unfortu-
nately, in phase II studies, BBR3464 was not an effective 
treatment for either small cell lung cancer [91], or gastric-
esophageal adenocarcinoma [92]. Concerns exist that 
BBR3464 is bound by serum proteins and degraded before it 
can accumulate inside cancer cells. Therefore, new ways of 
administering this drug (see below) could give it a new 
chance as an anti-cancer agent [25].  

 Another multinuclear Platinum compound, BBR3610 
(Fig. (4)), promotes cell killing by activation of caspase-8-
dependent mechanisms, which is enhanced by ERBB1/PI3K 
inhibitors and the activation of BAX and caspase-9 [93]. 
BBR3610 is extremely potent and displays an IC90 dose that 
is 250 times less than that of cisplatin against LNZ308 and 
LN443 glioma cells. Thus BBR3610 may serve as a che-
motherapeutic agent for gliomas.  

 Besides the polynuclear Platinum complexes, newly 
evaluated mononuclear Platinum complexes show promise. 
Picoplatin (Fig. (4); cis-amminedichloro(2-methylpyridine) 
Platinum(II)), which is also known as ZD0473, AMD473, 
and JM473, resulted from a fruitful collaboration between an 
academic institution, the Institute of Cancer, and a commer-
cial pharmaceutical company, Johnson Matthey/AnorMed 
[94]. Because cisplatin is detoxified by the tripeptide glu-
tathione [7, 95], these researchers decided to insert a bulky 
2-methylpyridine at the Platinum center to sterically hinder 

the reaction with glutathione, while preserving the ability of 
the drug to form adducts with DNA [96]. Like cisplatin, pi-
coplatin causes intrastrand adducts that introduce a local 
bend into DNA.  

 Pre-clinical studies with a panel of ovarian carcinoma 
cell lines revealed that picoplatin has an antitumor activity 
between that of cisplatin and carboplatin. However, in a cell 
line in which thiol substitution was the main mechanism of 
resistance to cisplatin and carboplatin, picoplatin activity 
was essentially unaltered. Picoplatin also showed activity 
against other cell lines in which resistance resulted from de-
creased drug transport, or increased DNA repair/increased 
tolerance to Platinum-DNA adducts [97]. Picoplatin also 
showed synergistic activity with paclitaxel against cisplatin-
resistant and cisplatin-non-resistant cancer cell lines [98, 99].  

 In phase I clinical trials, picoplatin was well tolerated, 
with myelosuppression presenting as the dose-limiting toxic-
ity. Side effects included neutropenia, thrombocytopenia, 
nausea, anorexia, mild alopecia and a metallic taste. There 
were no signs of the nephrotoxicity, neurotoxicity and oto-
toxicity so commonly caused by cisplatin. Picoplatin also 
showed some efficacy against ovarian and nonsmall cell lung 
cancers, and mesotheliomas and melanomas that had proven 
refractory to other treatments [100]. Further phase I studies 
that combined picoplatin with paclitaxel [101], gemcitabine 
[102], and vinorelbine [103, 104] established the safety of 
these drug combinations.  

 In Phase II clinical studies, picoplatin showed activity 
against Platinum-pretreated ovarian cancers [105, 106], and 
cisplatin-resistant small cell lung cancers [107]. Other phase 
II trials are underway. The sponsoring company, Poniard, 
has initiated phase III clinical tests, and this drug is being 
developed as a second-line treatment for small cell lung can-
cers after cisplatin or carboplatin treatment has failed. Com-
binations of picoplatin, and other antitumor drugs (5-
Fluorocytosine and Leucovorin) are being developed as a 
first-line treatment for metastatic colorectal cancer.  

 Satraplatin (Fig. (4); JM216; bis(aceto)amminedichloro-
(cyclohexylamine) Platinum(IV)), is the only oral platinating 
agent that has been tested in clinical studies. When adminis-
tered orally to mice with human ovarian carcinoma 
xenografts, satraplatin showed antitumor activities equal to 
those of intravenously administered cisplatin, or carboplatin 
[108]. It also displayed activity against human cancer cells 
that had acquired cisplatin resistance due to reduced Plati-
num transport [109]. Satraplatin undergoes in vivo biotrans-
formation into six products, of which JM118 is the major 
one [110]. JM118 maintains activity against mouse embryo 
cells that have lost the copper-influx transporter CTR1 [111]. 
Both satraplatin and JM118 have antitumor activity against 
human prostate cancer and other tumor types, including sev-
eral cell lines resistant to cisplatin, docetaxel and mitoxan-
trone. JM 118 is sixteen times more potent than satraplatin 
against prostate cancer cell lines [112, 113].  

 In phase I studies, satraplatin showed similar toxicities to 
carboplatin when given orally [114], but most side effects 
were manageable. Two small phase II studies that examined 
the antitumor activity of satraplatin against prostate cancer 
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showed promise [115, 116]. A phase III study called the Sa-
traplatin and Prednisone Against Refractory Cancer 
(SPARC) trial examined 950 prostate cancer patients. Pa-
tients who received Satraplatin showed decreased disease 
progression, but the overall length of survival was the same 
for both the control and Satraplatin groups [117]. The failure 
of satraplatin in this portion of its Phase II/III clinical studies 
has proven to be a major setback for this drug. GPC Biotech, 
the manufacturers of satraplatin, has withdrawn its new drug 
application with the Food and Drug Administration in the 
U.S., and the future of this drug is uncertain [118]. Satra-
platin might have other uses as a cancer treatment if com-
bined with radiation therapy [119].  

 Another new innovation that has breathed new life into 
cisplatin utilizes a novel way to deliver the drug. Lipoplatin 
nanoparticles are liposomes made from 1,2-dipalmitoyl-sn-
glycero-3-phosphatidyl-glycerol (DPPG) with cisplatin 
molecules in the center. The negatively-charged DPPG lipids 
increase the ability of these liposomes to fuse with cancer 
cells. The liposome exterior is coated with polyethylene gly-
col molecules to provide a hydrophilic surface that escapes 
surveillance by the immune system. These tiny particles (100 
nm) also easily pass through blood vessels (extravasation) to 
tumors [120]. The accumulation of the drug inside the tumor 
is up to 200-times that found in normal tissues [121]. There-
fore Lipoplatin can treat tumors with fewer side effects.  

 Clinical studies have confirmed the efficacy of 
Lipoplatin. A phase I clinical study on twenty-seven patients 
failed to show any neurotoxicity, ototoxicity, nephrotoxicity, 
or alopecia [122]. In phase II clinical studies, patients with 
non-small cell lung cancer or pancreatic cancer were given 
either Lipoplatin alone or a combination of Lipoplatin and 
some other drug, and showed a response rate and stable dis-
ease of over 70% [123]. Because Lipoplatin can cross the 
blood-brain barrier, it can potentially be used to treat brain 
tumors as well [124]. Lipoplatin is currently undergoing 
phase III studies.  

 Liposomal preparations of oxaliplatin (Lipoxal), are also 
undergoing clinical evaluation. Phase I clinical studies show 
that Lipoxal is a well tolerated agent that decreased the other 
side-effects of oxaliplatin, especially myelosuppression and 
gastrointestinal tract toxicities [125]. Lipoxal was used to 
treat patients with tumors that are highly insensitive to che-
motherapy, and showed activity against cancers that have 
metastasized to the bones. Phase II studies are still ongoing, 
and phase III studies have begun. Combinations of Lipoxal 
with other anticancer drugs are also undergoing phase II 
clinical evaluations [126-128]. Also in phase II studies is L-
NDDP (Aroplatin), a liposomal formulation of a structural 
analog of oxaliplatin (cis-bis-neodecanoato-trans-R,R-1,2-
diaminocyclohexane platinum (II)), in patients with therapy-
refractory advanced colorectal cancer [129]. This new prepa-
ration is another way to extend the efficacy of an already 
heavily used anticancer drug.  

NEW GENERATION OF RUTHENIUM BASED ANTI-

CANCER DRUGS 

 Ruthenium complexes are regarded as promising alterna-
tives to Platinum complexes. The initial discovery in the 

1970s that Ruthenium red possesses antitumor properties 
[130] motivated Clarke and his collaborators to develop and 
systematically examine fac-[RuCl3(NH3)3] and cis-
[RuCl2(NH3)4]Cl as anticancer agents. Unfortunately, these 
compounds were too insoluble to serve as competitive anti-
cancer agents [131].  

 The chemistry of Ruthenium complexes is well under-
stood and offers many approaches to innovative metallo-
pharmaceuticals. Ruthenium complexes have a tendency to 
adopt octahedral coordination geometries instead of the 
square-planar geometries of Platinum complexes. The appeal 
of organoruthenium complexes lies in their stability, both in 
the solid state and in solution. They exhibit slow rates of 
ligand dissociation, which allows for a more controlled re-
lease of the active form of the drug [132]. Ligand stability is 
crucial in drug design because fast ligand dissociation deac-
tivates the drug before it reaches its target. An additional 
advantage of the octahedral coordination geometry of ruthe-
nium(II) complexes is the possible tuning of ligand affinities, 
substitution rates, and redox potentials.  

 When compared to Platinum-containing drugs, Ruthe-

nium-based anticancer drugs exhibit a low general toxicity 
[133], and specifically accumulate inside cancer cells [134]. 

Ruthenium has the ability to mimic iron when binding to 

certain biomolecules, including serum transferrin and albu-
min [135], which are responsible for solubilization, trans-

port, and detoxification of iron in mammals. Rapidly-

growing cancer cells have a greater requirement for iron, 
which leads to an overexpression of transferrin receptors on 

their surfaces and permits Ruthenium compounds to accu-

mulate inside them. 

 One series of Ruthenium compounds that have been ex-

tensively studied for anticancer activity are the Ruthenium 

arene complexes, that contain a 1,3,5-triaza-7-phosphatricy-
clo[3.3.1.1]decane (PTA) group for increased water solubil-

ity. These “RAPTA” (Ruthenium-arene PTA) compounds 

have an arene-capped Ruthenium(II) center [136-139]. 
RAPTA compounds are highly active against cancer cell 

lines [140, 141], and, in vivo, they effectively reduce lung 

metastases in mice without significantly affecting the pri-
mary tumor [142].  

 RAPTA complexes can interact with DNA, but do so in a 

pH-dependent manner. In studies with plasmid DNA, 
RAPTA-C [(Fig. (5)); Ru (

6
-p-cymene)Cl2(PTA)] caused 

almost no DNA damage at pH > 7, but at pH < 7, caused 

widespread DNA damage [143]. However, it is doubtful that 
DNA is the primary target of RAPTA complexes. Detailed 

analyses of the binding of several different RAPTA deriva-

tives to DNA showed no direct correlation between oligonu-
cleotide binding and cytotoxicity [144, 145]. Likewise, the 

induction of DNA damage in Ehrlich ascites carcinoma 

(EAC) cells by RAPTA-C seems to result from the induction 
of apoptosis rather than causing it. EAC cells from RAPTA-

C-treated mice showed induction of JNK, p53, and BAX, all 

of which are pro-apoptosis genes. RAPTA-C also caused 
down-regulation of cyclin E, which is required to drive cells 

toward M phase, and the antiapoptosis gene Bcl-2. RAPTA-

C treatment also caused Cytochrome c release from mito-
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chondria and subsequent activation of caspase-9, which 

drives cells to apoptosis [146].  

 The anti-metastasis activity of RAPTA derivatives might 
result from their enzymatic inhibition capacities. When 
RAPTA derivatives were tested against two enzymes that are 
crucial for metastasis, thioredoxin reductase (E.C. 1.8.1.9) 
and cathepsin B (E.C. 3.4.22.1), several complexes inhibited 
these enzymes. In particular, three derivatives were potent 
inhibitors of cathepsin B (IC50 1.5-2.5 μM ) [147]. Since 
cathepsin B probably plays important roles in tumor metasta-
sis [148], this activity might be a prevalent part of the bio-
logical activity of RAPTA. Likewise, another RAPTA de-
rivative, RAPTA-T [Fig. (5); Ru(

6
-toluene)Cl2(PTA)], re-

duced metastatic processes in vitro like migration, invasion, 
and re-attachment to a new growth substrate. Thus it seems 
that RAPTA primarily targets cell surface molecules and not 
DNA [141]. 

 RAPTA compounds are generally well tolerated in vivo, 
but are prone to hydrolysis, and must be administered in sa-
line to suppress the cleavage of chloride ligands [149]. Be-
cause hydrolysis products can confound pharmacokinetics 
studies and jeopardize clinical evaluation trials, it is prefer-
able to use hydrolysis-resistant RAPTA derivatives. To this 
end, Ang and co-workers replaced the labile chloride ligands 
with bidentate ligands. They synthesized these molecules by 
reacting dimers of [(

6
-cymene)RuCl(μ-Cl)]2 with either an 

excess of silver oxalate or silver 1,1-cyclobutanedicar-
boxylate in a polar solvent (acetonitrile), followed by treat-
ment with stoichiometric amounts of PTA. Bidentate car-
boxylate ligands have been used to make cisplatin deriva-
tives that are used routinely in clinical practice, like car-
boplatin and oxaliplatin, more water soluble and hydrolysis 

resistant [56-61]. These new, bidentate RAPTA complexes, 
Ru(

6
-cymene)(PTA)(C2O4) and Ru(

6
-cymene)(PTA)(C6H6 

O4), resisted hydrolysis in water, and displayed much lower 
lower pKa values and greater kinetic stability than RAPTA 
derivatives with two chloride ligands in place of the car-
boxylate ligands. When assayed in vitro against cultured 
cancer cell lines, they displayed approximately the same 
anticancer activity as RAPTA-C. In oligonucleotide binding 
assays, measured by matrix-assisted laser desorption ioniza-
tion mass spectrometry, the bidentate RAPTA derivatives 
once again exhibited characteristics similar to RAPTA-C. 
Thus, these novel RAPTA derivatives with bidentate car-
boxylate ligands possess biological properties similar to 
other RAPTA derivatives, and highly desirable chemical 
properties [150]. This strategy might represent an ingenious 
way to develop new, stable and highly water-soluble 
RAPTA adducts. 

 A prominent Ruthenium(III) complex with anticancer 
activity is indazolium [trans-tetrachlorobis(1H-indazole)ru-
thenate(III)], otherwise known as KP1019 or FFC14a (Fig. 
(5)). KP1019 is made by refluxing ruthenium(III) chloride 
(RuCl3) with ethanol and hydrochloric acid, and then treating 
this solution with excess indazole. The result is a red-brown 
powder [151]. The sodium salt (sodium trans-[tetrachloro-
bis(1H-indazole)ruthenate(III)] has been designated KP1339 
(Fig. (5)), and is made from the indazolium salt by using a 
methathesis reaction with ammonium salts. KP1339 is thirty-
five times more water soluble than KP1019.  

 KP1019 is quite stable both as a solid and in aqueous 
solution [152]. An examination of KP1019 hydrolysis over 
time with electrospray ionization-mass spectroscopy (ESI-
MS) showed that chloride ions are exchanged for water or 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Ruthenium anticancer compounds. 
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hydroxyl groups. Capillary electrophoresis (CE) and high-
performance liquid chromatography (HPLC) experiments 
showed that temperature and pH influence the kinetics of 
hydrolysis, but only a small fraction of KP1019 (~2%) was 
hydrolyzed within one hour [153].  

 In the blood stream, KP1019 can react with serum pro-
teins like albumin and transferrin within minutes [154]. 
Many studies of the interactions of Ru(III) with plasma pro-
teins support the hypothesis that transferrin transports 
KP1019 throughout the body [155, 156]. KP1019 binds spe-
cifically binds to transferrin. Circular dichroism spectros-
copy and ESI-MS showed that two Ru molecules are bound 
to each transferrin protein [157]. KP1019 also binds human 
serum albumin. In fact, the majority of Ru species (80-90%) 
in the blood stream is bound to albumin [157, 158]. Trans-
port of KP1019 into cells is transferrin-mediated [159]. 
KP1019 can bind nucleotides, and competitive binding stud-
ies show that it preferentially binds guanine monophosphate 
over other bases [160]. However, KP1019 induced fifteen-
fold fewer interstrand DNA cross-links than cisplatin in can-
cer cells [161]. KP1019-induced DNA adducts possess a low 
capacity to terminate transcription [162].  

 KP1019 induces apoptosis in tumor cells by the intrinsic 
mitochondrial pathway [163]. Caspase-3 is activated some 
four hours after administration of the drug. Sensitivity of 
cells to KP1019 depends on the expression of Bcl-2 [164]. 
KP1019-induced apoptosis is not dependent on p53, which 
suggests that DNA-strand breaks are not the main mecha-
nism of cell killing [165].  

 In preclinical studies, KP1019 displayed a significant 
ability to inhibit the growth of human colon carcinoma cell 
lines [166]. In vitro studies in mice made use of tumors in-
duced by intrarectal application of acetoxymethylnitrosamine 
[167] Such tumors showed exquisite sensitivity to KP1019, 
even though they were resistant to cisplatin and other che-
motherapeutic agents [168]. KP1019 caused a 70-90% aver-
age reduction of tumor growth without causing any toxic 
side effects [169]. The drug is also active against other tumor 
types as well [167-171].  

 In phase I clinical studies, KP1019 showed no adverse 
effects when administered twice a week at doses ranging 
from 25-600 mg [153, 166]. Since KP1019 uses different 
means to kill tumor cells than Platinum-based drugs, it 
shows promise as a treatment for tumors that may develop 
cisplatin resistance [153, 166, 169, 172-173]. The low gen-
eral toxicity of KP1019 at effective doses also makes it an 
attractive chemotherapeutic agent.  

 Perhaps the most notable Ruthenium anticancer drugs 
developed so far are the Ru(III) complexes NAMI 
{Na[trans-RuCl4] (DMSO)(imida)]}, and its more stable 
imidazolium analogue NAMI-A, {H2Im[trans-RuCl4(DM-
SO)HIm[imidH] or imidazolium-trans-DMSO-imidazole-
tetrachlororuthenate} (Fig. (5)). NAMI-A is an innovative 
metal-based compound suitable for the pharmacologic treat-
ment of tumors [174] that shows high selectivity for solid 
tumor metastases, and low toxicity at pharmacologically 
active doses. This drug has successfully completed phase I 
clinical trials [175].  

 Since NAMI-A binds collagen very effectively [176], it 
exerts its greatest biological response in tissues that possess 
large quantities of collagen, like the lungs. Indeed NAMI-A 
reduces metastasis and growth of several different types of 
solid metastasizing lung cancers in animal models [177-179]. 
Despite the structural similarities between KP1019 and 
NAMI-A, they utilize distinct anticancer mechanisms. Spe-
cifically, NAMI-A affects the interaction of tumor cells with 
the extracellular matrix (ECM). It increases actin-dependent 
cell adhesion [180, 181], inhibits ECM degradation by de-
creasing the production of metalloproteases [182], inhibits 
angiogenesis [183], and reduces malignancy by decreasing 
cell invasiveness and migration. NAMI-A prevents tumor 
cells from invading matrigel without causing extensive cyto-
toxicity or permanently affecting progression through the 
cell cycle [184].  

 NAMI-A also influences EMC-dependent cell signaling. 
The mitogen-activated protein kinase (MAPK)/extracellular 
signal-regulated kinase (ERK) pathway controls cell prolif-
eration and differentiation, and plays a central role in tumor 
cell invasion and migration [185, 186]. Incubation of cul-
tured endothelial cells with serum or phorbol 12-myristate 
13-acetate (PMA) activates the MAPK/ERK pathway, but 
co-incubation of cells with serum or PMA and NAMI-A 
inhibits ERK-induced autophosphorylation, protein kinase 
C-mediated phosphorylation of MEK-1 and -2, and expres-
sion of c-myc, which is a downstream target of the 
MAPK/ERK signaling pathway [187].  

 NAMI-A also activates apoptosis in endothelial cells by 
inducing the release of Cytochrome c from mitochondria. 
Free Cytochrome c initiates apoptosis by forming a complex 
with Apaf-1 that then activates caspase-9 [188]. Normally, 
the heat shock protein HSP27 binds to released Cytochrome 
c and prevents it from complexing with Apaf-1 [189]. How-
ever, NAMI-A also causes down-regulation of hsp27 in en-
dothelial cells, which results in caspase activation, and, 
eventually, apoptosis [190]. Endothelial cells play a crucial 
role in angiogenesis [191], and inhibition of the MAPK/ERK 
signaling pathway in endothelial cells prevents angiogenesis 
[192, 193]. Since angiogenesis is crucial for tumor metasta-
sis, the antimetastatic capability of NAMI-A might stem 
primarily from its tendency to inhibit MAPK/ERK signaling. 
NAMI-A, however, does not seem to simply target one par-
ticular signal transduction pathway. Instead this drug seems 
to exploit the growth and differentiation abnormalities in 
tumor cells to hasten their death, or drive those cells with the 
greatest metastatic potential towards more normal pheno-
types.  

FUTURE STRATEGIES 

 Cisplatin’s stability, aqueous solubility, and slow kinetics 
of ligand substitution have prompted extensive studies on 
new Platinum(II) and Platinum(IV) drugs. However, the 
emergence of resistance and limited progress in the devel-
opment of such complexes have led to the development of 
non-Platinum(II) metal complexes that have unique mecha-
nisms of action. Molybdenum- and copper-containing com-
plexes are particularly interesting.  

 Certain Copper(II) complexes show anticancer activity. 
Schiff base derivatives of 3-formylchromone 3-6 that hold 
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Cu(II) ions in a bent square-planar geometry stabilize 
Cu

2+
/Cu

+
 redox forms. Molecular modeling studies showed 

that these complexes could interact with portions of the ma-
jor signaling molecule Protein Kinase B (PKB or Akt). In 
vitro evaluation of these complexes against hormone-
independent and metastatic breast (BT20), prostate (PC-3), 
and K-ras mutant (COLO 357) and K-ras wild-type (BxPC-
3) pancreatic cancer cells showed that one particular mole-
cule (complex seven), which displayed the tightest binding 
to PKB, also had the greatest anticancer activity [195]. The 
same research group also made Schiff base copper com-
plexes of quinoline-2-carboxaldehyde that demonstrated 
dose-dependent activity against two prostate cancer cell 
lines. One of these complexes (FPA-137; quinoline 
thiosemicarbazone) had an IC50 of 3.2-4 μM, compared to 
the IC50 of clioquinol (10 μM) and pyrrolidine dithiocarba-
mate (20 μM) [196].  

 The ability of other Cu(II) complexes to induce apoptosis 
in cancer cells results from proteasome inhibition. The 
proteasome hydrolyzes, unfolded, damaged, unneeded, or 
marked proteins, and it is essential for cell division, growth, 
and differentiation [197]. Inhibition of the proteasome in 
prostate cancer cells sensitizes them to apoptosis [198]. 
Complexes of dithiocarbamate derivatives with copper and 
other metals inhibit the 26S proteasome and induce apoptosis 
in breast cancer cells [199, 200]. Schiff bases of copper with 
L-glutamate also inhibit the proteasome and induce apopto-
sis in human breast cancer and leukemia cells [201]. Two 
other compounds, 8-hydroxyquinoline-copper(II) and 5,7,-
dichloro-8-hydroxyquinoline-copper(II) inhibit the protea-
some and induce apoptosis in breast cancer cells [202]. Other 
Cu(II) complexes like Isatin-Schiff base Copper(II) com-
plexes [203], and a novel complex, bis(phenanthroline)-4-
methylcoumarin-6,7-dioxacetatocopper(II) [204], induce 
apoptosis in cancer cells in yet uncharacterized ways. Cop-
per-adenine complexes attack several different intracellular 
targets and also possess potential anticancer activity [205]. 

 Several Molybdenum complexes display excellent anti-
cancer potentials. In particular the polyoxomolybdates show 
activity against tumors that have previously resisted chemo-
therapy [206, 207]. Another drug, tetrathiomolybdate, has an 
uncanny ability to chelate copper ions. Copper ions are es-
sential for migration and proliferation of endothelial cells, 
and tumor angiogenesis [208]. Tetrathiomolybdate depletes 
the body of copper ions, inhibits angiogenesis, and starves 
tumors to death. Phase I clinical trials have been successfully 
completed [209], and phase II trials have confirmed that 
tetrathiomolybdate is effective against advanced kidney can-
cer, and after surgical resection of mesothelioma [210, 211]. 
Such compounds or their derivatives might provide excellent 
alternatives to cisplatin treatment in the future.  

 In a recent review, Paul Dyson (Swiss Federal Institute of 
Technology, Lausanne, Switzerland) and Gianni Sava (Uni-
versity of Trieste, Italy) note that the discovery of new 
metal-based antitumour drugs has heavily relied on cell vi-
ability assays that generate IC50 values [62]. Even though 
many thousands of new compounds have been synthesized, 
very few have entered into the clinical trial stage. Further-
more, some drugs that failed the initial cell-viability tests 
have been shown to possess palmary antitumour activity. For 

example, NAMI-A and RAPTA derivatives failed the origi-
nal National Cancer Institute (NCI) screens and would have 
been discarded as potential anticancer drugs were they not 
“rescued” by intrepid researchers who continued to work on 
them. This leaves us with the uncomfortable conclusion that 
many potentially useful anticancer drugs are falling through 
the cracks created by the present methods of screening po-
tential drugs. To solve this problem, Dyson and Sava suggest 
that the development of new assays that use cell lines that 
contain the appropriate drug targets are far more important 
for future drug discovery programs than the discovery of 
new DNA-binding drugs. Parallel developments should fo-
cus on assays that rapidly identify potential drug targets and 
interactions with particular molecules. Conversely, they ar-
gue that such research should rely less on cell viability as-
says and the derivation of IC50 values, since sole dependence 
on these experiments can potentially disqualify drugs with 
great antitumor potential.  

 In summary, although the original research in the area of 
metal-based anticancer agents largely involved Pt(II) com-
plexes, considerable focus on this area still exists. Ru com-
plexes possess great potential and more recent work on Mo 
and Cu(II) complexes, albeit while still in the formative 
stages, holds some promise in the fight against cancer. 
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